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Abstract

A call center is a centralized hub where customer and other telephone calls are dealt with by

an organization. In today’s economy, they have become the primary point of contact between

customers and businesses. Accurate prediction of the call arrival rate is therefore indispens-

able for call center practitioners to staff their call center efficiently and cost effectively. This

article proposes a multiplicative model for modeling and forecasting within-day arrival rates to

a US commercial bank’s call center. Markov chain Monte Carlo sampling methods are used

to estimate both latent states and model parameters. One-day-ahead density forecasts for the

rates and counts are provided. The calibration of these predictive distributions is evaluated

through probability integral transforms. Furthermore, we provide one-day-ahead forecasts com-

parisons with classical statistical models. Our predictions show significant improvements of up

to 25% over these standards. A sequential Monte Carlo algorithm is also proposed for sequential

estimation and forecasts of the model parameters and rates.
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1 Introduction

A call center is a centralized hub that exists solely for the purpose of making or attending calls to

or from customers or prospective customers. In today’s economy, call centers have not only become

the primary point of contact between customers and businesses but also a major investment for

many organizations. According to some recent industry estimates, there are approximately 2.86

million operator positions in over 50,000 call centers in the US with some locations employing over

1000 agents. Due to the magnitude of these operations, call center supervisors need to staff their

organization efficiently in order to provide a satisfactory level of service at reasonable costs (see

Gans et al. 2003). Proper management of such a center requires estimation of several operational

“primitives”, which combined with queuing theory considerations, determine appropriate staffing

levels. Accurate prediction of the level of customer arrivals is the most difficult of the primitives

to assess.

In the past 15 years, major advances have been made in modeling and predicting arrivals to a

telephone call center. Early models describing the arrival process include ARIMA processes and

transfer functions (see Bianchi et al. 1993 and Andrews and Cunningham 1995). Recent empirical

studies have revealed stylized dynamics of the arrival process. Jongbloed and Koole (2001) remark

that the process follows an inhomogeneous Poisson process where the arrival rate is stochastic.

Furthermore, Avramides et al. (2004) remark that the arrival rate varies considerably throughout

the day and within their model it appears that call volumes within short periods exhibit strong

serial autocorrelation. Finally, Brown et al. (2005) observe persistence in the day-to-day dynamics

of the arrival rate.

In this paper, we extend on the work of Avramides and co-authors (2004) and Brown et al.

(2005) and consider an inhomogeneous Poisson model where the arrival rate incorporates both

strong within-day patterns and day-to-day dynamics to forecast future arrival rates. The temporal

structure of the arrival rate has therefore a two way character, since there is day-to-day variation

and also intraday variation. We model these two types of variation separately before combining

them in a multiplicative model. Furthermore we provide a fast and efficient Bayesian Markov chain

Monte Carlo (MCMC) estimation algorithm.

Recent MCMC methods proposed for inhomogeneous Poisson processes include Shephard and

Pitt (1997) and Gamerman (1998) who consider the class of exponential families and generalized

linear models, respectively. Soyer and Tarimcilar (2004) provide a Bayesian analysis of an inhomo-

geneous Cox process to model call center data but focus on the impact of advertising campaigns

on arrival rates. A rather different approach is considered here which relies on taking a slightly

modified square root of the binned point-process counts and then treating these via variations of

multiplicative Gaussian time series models.

The outline of this paper is as follows. In Section 2, we describe the call center analyzed in the
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study and the data provided to us. In Section 3, we propose a model for predicting the call arrival

rate which is essential in predicting the workload and consequently the staffing of the call center.

In addition, we discuss the choice of priors and present the Markov chain Monte Carlo algorithm

used to estimate the parameters and latent states in the model. Section 4 gives result from the

fitted model to the call center data. A comparative study of competing models based on one day

ahead forecasting performance is also presented. A sequential Monte Carlo algorithm, proposed

to sequentially estimate the current rate, is presented in Section 4.3. In Section 5, we discuss the

advantages of the method developed in this paper, and outline possible extensions to our work.

2 The Data

In this paper we consider data provided by a large North American commercial bank. A detailed

summary of each call handled by the call center is provided from March to October 2003. The data

was extracted using DATA-MOCCA (see Trofimov et al. 2005) and can be found on the authors

website at www-stat.wharton.upenn.edu/∼weinber2/data.txt. The path followed by a call through

the call center is as follows. A customer places a call to the bank’s call center. The customer dials a

specific phone number according to the service he desires. Once the call reaches the call center, the

customer is greeted by a voice response unit (VRU), a computer automated machine which offers

various types of information such as the banks opening hours and the user’s account information.

The user is prompted by the machine to select one of a variety of options. Approximately 80% of

customers receive the required information through the VRU and hang up. The remaining 20%

of the customers advance to the service queue. There the customer waits until the next available

agent becomes available. The service queue does not adhere to the usual first in, first out (FIFO)

principle as there are premium customers who are prioritized in the queue. If more than one agent

is available, the call is routed to the appropriate agent who has been idle for the longest time.

While waiting in the queue, a small fraction of customers run out of patience and hang up before

actually speaking to an agent.

The bank has various branches of operations such as retail banking, consumer lending and

private banking for premium clients, just to mention a few. The call arrival pattern is distinctively

different for each type of service. For this reason, we restrict our attention to calls handled by the

retail banking division which accounts for approximately 68% of the calls. Although the call center

is open 24 hours a day, we concentrate our effort on calls received between 7am and 9:05pm as this

is when the call center is most active. Not surprisingly, the pattern of call arrivals is very different

for weekdays and for weekends. Furthermore, the weekend opening hours are very different from the

weekday hours of operation. For these reasons and to simplify notation, we focus our attention on

weekdays in this paper. We do however give results of the analysis that includes weekends in section

4.2.4 The salary of the telephone service operators accounts for almost all the operational costs of a
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call center (about 70% of their budget). For this reason, accurate predictions of the arrival rate to

the service queue are necessary for supervisors to staff their centers effectively. These predictions

coupled with a precise estimate of service times lead to a good forecast of the load using Little’s

Law (Little 1961).
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Figure 1: Time series of daily retail banking call volumes handled on non-holiday weekdays between

7am and 9:05pm from March 3 to October 24, 2003.

The data used in the study are summarized in Figures 1 and 2. Figure 1 shows a time series

of the daily volumes of calls that reach the call center’s service queue from March 3 to October

24, 2003. A number of patterns emerge from this plot: Monday is the busiest day of the week;

there is then a gradual decrease in calls from Tuesday to Thursday; the volume increases again

on Friday. Furthermore, the plot reveals one significant outlier which lands quite strangely on a

Tuesday. After closer inspection, we realize that this corresponds to the day after Labor day. The

closure of the call center on that holiday explains the unusually high volume on this particular day.

Since this is in effect the first day of the week, we will proceed by modeling this day as a Monday.

This is the only such day in our data set hence we don’t have enough data to handle this issue

in a completely satisfactory manner. Our best guess is that if we did have extensive additional

data that it would suggest handling days after Monday holidays as a Monday, as we have decided

to do, or (if we had experience from enough such days) that it would suggest making this a new,

additional category of day. This is thus an issue about which our data is not sufficient to supply a

definitive answer.
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Figure 2: A smoothing spline fit of the Retail banking call arrivals to the service queue normalized

by the daily volumes: March 3rd - October 24th 2003

Figure 2 displays the average within-day call arrival patterns for each weekday from March 3

through October 24, 2003. The five curves are obtained by fitting the smooth.spline function

in S-plus to the volumes of calls that reach the service queue every 5 minutes, normalized by the

daily volumes. From this plot, we can infer three distinct within-day features. First, the call

arrivals increase sharply between 7am and 10am, at which time the call center is at its busiest. The

volume then decreases linearly as the day progresses. At around 5pm, as the work day finishes, we

notice a sudden downward slope in the number of calls. Although the within-day patterns share

these common trends, there are sufficient differences across weekdays that we model the within-day

pattern for each day separately. In particular, we observe that Monday morning starts off slower

than the four other weekdays. In addition, there is an unusually quick dropoff in the number of

calls on Friday afternoon.

3 The Model

Classical queuing theory assumes that the arrivals to the service queue follow a Poisson process with

constant rate. Figure 2 clearly illustrates that the standard theory cannot be applied in this context

as there are distinct differences in call arrival rates within a day. To overcome this modeling issue,

call center practitioners assume a constant rate for short time intervals and consequently apply the
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standard queueing methodology on these shorter time intervals. Jongbloed and Koole (2001) argue

that the rate is not constant over these short time frames and proceed by modeling the rate of

arrivals in these periods using a Poisson mixture to account for the overdispersion in the data. In

their recent work, Brown et al. (2005) remark that the arrival pattern follows a time inhomogeneous

Poisson process where the rate evolves smoothly through the day. Furthermore, they state that

the Poisson arrival rates, which we will refer to as λ(t), should be modeled as a stochastic process

due to the overdispersed data, rather than a deterministic function of time of day and day of week.

Extending on this work, we construct a model to estimate and predict future λ(t)’s.

Let Njk denote the number of arrivals to the queue on day j = 1, . . . , J during the time interval

[tk−1, tk] where k = 1, . . . ,K is the kth period in the day. In our study, we have J = 164 days and

K = 169 time periods since we are using five minute intervals and tk = k/169. In addition, let the

weekday corresponding to day j be denoted by dj (for example, dj = 1 signifies that day j is a

Monday).

We first consider the following model

Njk ∼ Poiss(λjk), λjk = Rdj
(tk) vj + εjk (1a)

where λjk is the arrival rate for day j and period k, Rdj
(tk) is the proportion of daily calls on day

j that are handled during the time interval [tk−1, tk), vj is a proxy for the daily volume on day j,

and εjk is a random error. The assumption here is that every weekday has a different within-day

pattern. Furthermore Ri is a density and therefore

K∑

k=1

Rdj
(tk) = 1 for dj = 1, . . . , 5. (1b)

Next, we follow the work of Brown et al. (2005), and use the variance stabilizing transformation

for Poisson data, which is based on the following result (Brown et al., 2001): If N is Poiss(λ), then

Y =
√
N + 1

4 has approximately a mean
√
λ and variance 1

4 . In addition, as λ → ∞, Y is

approximately normal. This approximation is very accurate for the dataset used in our analysis

since the arrival counts are fairly large (∼ 300).

Using the approximation discussed above and defining yjk =
√
Njk + 1

4 , we obtain the model

yjk = gdj
(tk)xj + εjk, εjk

iid∼ N (0, σ2). (2)

The connection between (1a) and (2) is established by realizing that gdj
(tk) =

√
Rdj

(tk) and xj =
√
vj. We take into account the correlation between daily volumes by assuming an autoregressive

structure for the daily random effect xj , adjusting for the type of day. The model for this can be
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written as

xj − αdj
= β(xj−1 − αdj−1

) + ηj, ηj
iid∼ N (0, ψ2) (3)

where αdj
denote the intercept for day dj . It should be noted that other models that incorporated

linear and quadratic trend or higher order autocorrelation were considered but did not substantially

improve the model fit.

Following remarks made on Figure 2, a different daily pattern of call arrivals for each day of the

week is assumed and is denoted by gdj
. In addition, we incorporate smoothness in the within-day

pattern through the following model

d2gdj
(tk)

dt2k
= τdj

dWdj
(tk)

dtk
(4a)

where

K∑

k=1

gdj
(tk)

2 = 1, for dj = 1, . . . , 5. (4b)

Here Wdj
(t) are independent Wiener processes with Wdj

(0) = 0 and var {Wdj
(t)} = t. Since g

refers to the within-day pattern, the restriction (4b) is equivalent to the constraint (1b) on the

R’s. This assumption is also needed for identifiability purposes. The unconstrained prior on the

g’s, given by (4a), has close connections to cubic smoothing splines. For more information on the

equivalence between this prior distribution and the cubic smoothing spline, see Wahba (1983).

Following the work of Kohn and Ansley (1987), we can define zdj
(tk) = {gdj

(tk), dgdj
(tk)/dtk},

and rewrite the prior on the g’s as a vector autoregressive process on the zdj
’s. This leads to the

following model

yjk = h′ zdj
(tk)xj + εjk, εjk ∼ N (0, σ2) (5)

xj − αdj
= β(xj−1 − αdj−1

) + ηj, ηj ∼ N (0, ψ2) (6)

zdj
(tk) = F (δ) zdj

(tk−1) + uk, uk ∼ N (0, τ2
dj
U(δ)) (7)

where εjk, ηj and uk are mutually independent, δ = tk − tk−1 and h′ = [1, 0]. The matrices F(δ)

and U(δ) are defined as

F (δ) =

(
1 δ

0 1

)
, U(δ) =

(
δ3/3 δ2/2

δ2/2 δ

)
.

We assume diffuse distributions for the initial states x1 and zdj
(t1) for dj = 1, . . . , 5. Equations

(5)-(7) correspond to a multiplicative model with two latent states which evolve on different time
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scales. The formulation above also facilitates computation, as conditional on each latent state

variable, the model can be cast into linear state space form. The efficient forward-filtering backward-

sampling (FFBS) algorithm proposed by Carter and Kohn (1994) and Frühwirth-Schnatter (1994)

can consequently be implemented to carry out Bayesian inference on the model.

It should be noted that the Bayesian methodology developed by Shephard and Pitt (1997) and

Gamerman (1998) for dynamic generalized linear models could have been applied to the original

Poisson model. However, we believe that the root-unroot methodology has several distinct ad-

vantages here. First, the normal approximation is very accurate in this study. Furthermore, a

conjugate multivariate normal prior with a wide variety of covariance structures such as a moving

average or autoregressive process can be imposed on x and g. An equivalent conjugate prior on the

Poisson rates is much harder to derive and is the subject of current research. The methodology

developed by Chen and Fomby (1999) for stable seasonal pattern models could also have been

used here. Incorporating the within-day dependencies through smoothness would however be quite

complicated with their methods.

To complete the Bayesian specification of the model, we need to specify the prior distributions

on the parameters.

3.1 Prior Selection

For notational convenience, let α = (α1, α2, α3, α4, α5), α =
4∑
i=1

αi, τ
2 = (τ2

1 , τ
2
2 , τ

2
3 , τ

2
4 , τ

2
5 ) and

θ = (α, β, ψ2, τ2, σ2). After some careful sensitivity analysis, the following priors were selected for

the parameters of the model described above. Independent priors are imposed on all parameters

except on the individual αi. Hence, p(θ) can be written as the product of the following priors

p(α) ∝
(

4∑

i=1

(αi − α)2

)−1

p(β) = U [0, 1]

p(τ2
i ) = IG(aτi , bτi) i = 1, . . . , 5

p(σ2) = IG(aσ , bσ)

p(ψ2) = IG(aψ , bψ).

Several remarks should be made on the choice of priors. The traditional multivariate normal prior

is not used on α. Instead, a flat prior on the overall mean α (Lindley and Smith, 1972) coupled

with the harmonic prior on the differences αi−α is our preferred choice due to their good minimax

and shrinkage properties (Stein, 1981). The specific construction of the prior leads to shrinkage

towards the overall mean rather than the origin. For modeling purposes, we also assume that

xj − αdj
follows a stationary process with positive correlation and therefore impose a uniform
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U(0, 1) prior on the autoregressive coefficient. Finally, conjugate inverse gamma priors are used on

the variance components. The hyperparameters are specific to the data analyzed and therefore will

be presented in the case study section.

3.2 Posterior Inference

The goal of our analysis is to carry out exact inference on the joint posterior distribution

p(x, z, θ|Y1:J ) ∝ p(Y1:J |x, z, θ) p(x|θ)
5∏

i=1

p(zi|θ) p(θ)

where Y1:J = (y11, . . . , y1K , . . . , yJ1, . . . , yJK), x = (x1, . . . , xJ), z = (z1, z2, z3, z4, z5) and zdj
=

(zi(t1), . . . , zdj
(tK)) for dj = 1, . . . , 5. We sample the parameters and latent states using a hybrid

MCMC algorithm developed in the Appendix that utilizes both Gibbs sampling steps and random

walk Metropolis steps (see Robert and Casella 2004 and Metropolis et al. 1953). The algorithm

recursively cycles between sampling from p(x|z, θ, Y1:J ), p(z|x, θ, Y1:J) and p(θ|x, z, Y1:J). We benefit

from the forward-filtering backward-sampling algorithm to draw directly the whole path of x’s from

p(x|z, θ, Y1:J). The same algorithm is also used to draw the whole path of zdj
’s from p(zdj

|x, θ, Y1:J)

for each day of the week. This algorithm enables fast mixing of the Markov chain.

We should point out one slight complication in the model. The Gaussian prior selected for

the gdj
(dj = 1, . . . , 5) corresponds to a cubic smoothing spline constrained to lie on the sphere

∑
k g

2
dj

(tk) = 1. This quadratic constraint complicates posterior simulation since the posterior is

also a constrained Gaussian. A Metropolis algorithm would be infeasible to simulate from this

distribution as we would either have to evaluate the prior on the sphere which would involve a

169-dimensional integral, or use the uninformative constrained prior as the proposal distribution

which would lead to rejecting all proposed moves. To avoid this problem, we sample from the

unconstrained posterior using FFBS and then renormalize the draws. In our application, the

unconstrained samples of
∑

k g
2
dj

(tk) fall between 0.99 and 1.01, indicating that the normalized

draws are approximately from the true conditional posterior distribution. If the constraint set were

affine, the argument would be exact because in this case conditioning is the same as projecting onto

a line. Since the posterior is highly concentrated around a point on the sphere, and the sphere is

locally linear, the approximation is very accurate.

4 Case Study

Our case study consists of three steps. First, the MCMC algorithm is applied to the whole data

set to estimate latent states and parameters and check model adequacy. A careful assessment

of convergence is also conducted. We then perform an out-of-sample forecasting exercise using
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the same model. We compare our forecasting performance to seasonal regression models. The

competing models and the results will be discussed in Section 4.2. Finally, a sequential Monte

Carlo algorithm for within day learning and forecasting is proposed. Consequently, we measure

whether incorporating morning data greatly improves the afternoon and evening forecasts.

4.1 Posterior Estimation

As stated above, the dataset used in this study consists of 164 days. Within each day, the number

of retail banking call arrivals per 5 minute interval is recorded between 7am and 9:05pm, leaving

us with 169 time periods. The algorithm ran according to the following specifications. The chain is

run for 49,000 iterations after a burn-in period of 1000. The analysis of the autocorrelation function

of each parameter and latent state led us to save every 10th iteration leaving 4899 (approximately)

independent samples for posterior inference. In what follows, we will refer to the MCMC sample

size as M .

The prior on θ described in Section 3.1 is used with the following hyperparameters: aσ = 0.05,

bσ = 0.05, aψ = 0.05, bψ = 0.05, aτi = 0.05 and bτi = 0.05 for i = 1, . . . , 5, which corresponds

to very diffuse priors. Furthermore x1 and zi(t1) are drawn from the following diffuse priors,

x1 ∼ N (0, 105) and zi(t1) ∼ N (0, 105I). An interesting feature of the model arises when performing

a prior sensitivity analysis . After some careful analysis on simulated data, we observe that for small

values of β, the variance components σ2 and ψ2 become non-identifiable and more peaked priors

are needed. However, due to the high persistence of the autoregressive process in our application,

we are able to place diffuse priors on the two variances. The marginal posterior distributions of x

and z are not sensitive to the choice of hyperparameters due to the vast quantities of data available

in the analysis.

We ran the algorithm from multiple starting values concluding that the choice of initial values

didn’t affect the convergence of the Markov chain. The results described below are based on the

following initial parameter values: α(0) = (190, 180, 175, 175, 180), β(0) = 0.65, (σ2)(0) = 0.25,

(ψ2)(0) = 19.85 and (τ2)(0) = (25, 25, 25, 25, 25).

Careful analysis of the traceplots and autocorrelation function (ACF) of each parameter was

performed to check the convergence of the Markov chain to its stationary distribution. Figures 3 and

4 display the marginal posterior distributions p(θ|Y1:J). Several conclusions can be made from these

plots. First, we should point out that the posterior mean of σ2 is 0.347. This is a very encouraging

result. If the model accounted for all the variance in the data, σ2 would be approximately 0.25 but

no smaller, according to the root-unroot theory. We initially considered a model with the same

within-day pattern g for all days. The estimated σ2 was 0.432 which is substantially larger than

the model considered here. The autoregressive coefficient β is highly significant with a posterior

mean of 0.68. The analysis also confirms that there is an obvious difference in daily random effects
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Figure 3: Posterior histograms of β, ψ2 and σ2.
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across weekdays, ranging from a posterior mean of 175 for Thursdays to 190 for Mondays. The

posterior mean of τ2 ranges from 0.66 for Wednesday to 1.08 for Friday. This indicates that the

within-day patterns are very smooth as the cubic spline penalty factors for each of the five days

(i = 1, . . . , 5) defined as σ2 (τ2
i

∑
{j : dj=i}

x2
j )

−1, are very small.

4.2 One-Day-Ahead Forecasting

The previous section concentrated on the in-sample performance of the model and estimation

procedure. This exercise is indispensable to check model adequacy but it is not of primary interest

to call center managers who need good forecasts of call arrival rates in order to plan ahead and

accurately staff their center. A one-day- ahead prediction exercise was therefore conducted to

compare the out-of-sample performance of the model with industry standards. Ideally, call center

managers also require forecasts at longer time horizons. Unfortunately, based on our estimated

AR(1) coefficient, we are unable to accurately predict call volumes at horizons greater than a

week. Additional covariates, not provided in this dataset, would therefore be needed to enhance

our predictions.

4.2.1 Forecast Densities for Rates and Volumes

To simplify notation, let λj. = (λj1, . . . , λjK) and Nj. = (Nj1, . . . , NjK) denote the rates and counts

on day j, and define Ω = (xj−1, z, θ). The one-day-ahead predictive density for the rates is given

by

p(λj.|Y1:j−1) =

∫∫
p(λj.|xj , zdj

) p(xj|xj−1, θ) p(xj−1, zdj
, θ|Y1:j−1) dxj−1 dθ.

Note that the third term in the integrand is the joint posterior distribution of the model parameters

and states on day j − 1, the second term is the AR(1) Gaussian transition density while the first

term is a degenerate distribution since λ is a deterministic function of x and z. The one-day ahead

predictive density for the counts on day j is given by

p(Nj.|Y1:j−1) =

∫∫
p(Nj.|λj., θ) p(λj., θ|Y1:j−1) dλj. dθ.

These predictive densities are not available in closed form as the rates and counts are nonlinear

functions of xj and Ω. We therefore approximate these distributions by a large sample drawn using

the algorithm outlined below.
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Algorithm 1: One-Day-Ahead Forecasts of Rates and Counts

Step 0: Start with an MCMC sample, Ω(1), . . . ,Ω(M), drawn from p(Ω|Y1:j−1).

Step 1: Draw x
(i)
j ∼ N

(
α

(i)
dj

+ β(i)(x
(i)
j−1 − α

(i)
dj−1

), (ψ2)(i)
)

for each i = 1, . . . ,M .

Step 2: For each period k = 1, . . . ,K and each i = 1, . . . ,M .

Step 2a: Set λ
(i)
jk =

(
x

(i)
j gdj

(tk)
(i)
)2
.

Step 2b: Draw y
(i)
jk ∼ N

(√
λ

(i)
jk , (σ2)(i)

)
.

Step 2c: Set N
(i)
jk =

(
y

(i)
jk

)2
− 0.25.

Steps 2a and 2c of the algorithm described above provide samples from p(λj.|Y1:j−1) and

p(Nj.|Y1:j−1) respectively. Since the arrival rate is an unobservable quantity, we focus our attention

on call volumes in order to compare the out-of-sample performance of various models.

4.2.2 Competing Forecasts

In what follows, we will refer to the approach described above as Model 1. For comparative

purposes, we will consider two simple alternatives which we refer to as Model 2 and Model 3. The

first model is a linear additive model on the transformed data with a day of the week and time of

day as covariates. In the second model, we also add an interaction between the day of the week

and the time of day effects. The description of the two seasonal linear models follows

Model 2: yjk = µ+ αdj
+ βk + εjk εjk ∼ N (0, σ2)

Model 3: yjk = µ+ αdj
+ βk + γdjk + εjk εjk ∼ N (0, σ2)

where yjk =
√
Njk + 1

4 . We fit the models on historical data using least squares. The normality

assumption enables us to also obtain prediction intervals for future observations.

The model proposed by Brown et al. (2005) was originally considered as a competing model.

Unfortunately, the model in their analysis does not incorporate all the dynamics of the data ana-

lyzed here such as day of the week effects and different within-day patterns for each weekday. A

reformulation of their model adjusting for all these new features would result in a representation

similar to the one presented in this paper and therefore would not be subject to fair comparison.

4.2.3 One-day-ahead forecast analysis

The one-day-ahead forecasting exercise is performed in the following manner. For the 64 days

ranging from July 25 to October 24, 2003,
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• Consider the 100 preceding days as the historical dataset.

• Estimate the parameters and latent states for the model described in the paper using the

same recipe described in Section 4.1. For the competing models, compute the the maximum

likelihood estimator for each parameter.

• For all three models, perform a one-day-ahead forecast of call volumes for period k.

• Compute the forecast root mean square error (RMSE) and average percent error (APE),

defined for each day j as follows

RMSEj =

√√√√ 1

K

K∑

k=1

(Njk − N̂jk)2, APEj =
100

K

K∑

k=1

|Njk − N̂jk|
Njk

.

• Compute the 95% coverage probability (COVER) and the average 95% forecast interval width

(WIDTH), defined for each day j as follows

COVERj =
1

K

K∑

k=1

I(N̂2.5
jk < Njk < N̂97.5

jk ), WIDTHj =
1

K

K∑

k=1

(N̂97.5
jk − N̂2.5

jk )

Here I(·) is the indicator function. N̂jk and N̂Q
jk are the mean and Qth quantile of the forecast

distribution. For Model 1, these quantities are computed using the Monte Carlo sample, for Model

2 and 3, they are based on the maximum likelihood estimates and the assumption of normality.

RMSE APE

M1 M2 M3 M1 M2 M3

Min 11.14 12.94 12.39 5.6 5.8 5.9

25th 14.25 16.22 15.53 7.0 7.8 7.2

50th 15.83 19.12 17.96 7.4 9.3 7.9

Mean 18.28 21.32 20.46 8.4 10.1 9.1

75th 19.83 21.82 22.10 8.5 11.6 9.7

Max 43.42 51.37 45.69 28.6 36.3 29.9

Table 1: Summary of one-day ahead forecasting performance of the three competing models: Model

1 (M1), Model 2 (M2), Model 3 (M3). Summaries are based on data between 7am and 9:05pm.

Table 1 summarizes the distribution of the RMSE and APE for the all three models over the

64-day forecast period. Several remarks can be made based on these results. The model developed

in this paper clearly outperforms the two competing models: The median forecast RMSE is 20.8%
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and 13.5% lower than those of Model 2 and 3 respectively. We can conclude that the autoregressive

feature of the model presented in this paper greatly improves the accuracy of our forecasts.

Coverage Average

Probability Width

M1 M2 M3 M1 M2 M3

Min 0.686 0.598 0.609 64.54 76.79 72.38

25th 0.935 0.920 0.938 68.13 79.71 74.98

50th 0.970 0.967 0.976 69.23 80.71 76.01

Mean 0.947 0.937 0.941 70.10 81.48 76.69

75th 0.988 0.990 0.988 72.41 82.40 77.13

Max 1.000 1.000 1.000 79.30 88.10 82.37

Table 2: Summary of 95% one-day-ahead forecast intervals for all three competing models. Sum-

maries are based on calls handled between 7am and 9:05pm.

Table 2 summarizes the distribution of the 64 coverage probabilities and average interval widths

for all three models. We note that the empirical coverage of the 95% prediction intervals are

extremely accurate with mean coverages of 94.7%, 93.7% and 94.1% respectively. We should note

that the prediction intervals for Model 1 are on average 16.2% and 9.4% narrower than Model 2 and

3. While still obtaining coverage probabilities close to the nominal value, Model 1 produces more

precise prediction intervals. The rather wide prediction intervals are mainly due to the inherent

Poisson variation which is proportional to the arrival rate.

4.2.4 One-day-ahead forecast analysis with weekends

In this section, we discuss the results of the one-step-ahead forecasting exercise when we include

both weekdays and weekends. The number of days J in our case study increases to 231 days ranging

from July 25 to October 24, 2003. In this organization, the weekend opening hours are shorter

than the weekday operating hours (9am to 5pm) leaving us with only 108 periods within a day

for both Saturday and Sunday and 169 periods for each weekday. We perform the same analysis

as discussed in the previous section using a 100 day moving window. The main difference, when

including the weekends, is that the day-to-day autocorrelation β is smaller with a posterior mean

of 0.62. Table 3 summarizes the distribution of the RMSE and APE for the all three models over

the 131-day forecast period. Again, we see that Model 1 outperforms the two other models with

a median forecast RMSE which is approximately 40% and 8% lower than those of Model 2 and 3

respectively.
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RMSE APE

M1 M2 M3 M1 M2 M3

Min 6.86 11.28 7.31 5.7 6.6 5.7

25th 13.35 17.36 14.06 7.1 9.8 7.6

50th 15.23 21.45 16.47 8.0 12.0 9.2

Mean 16.31 23.02 18.14 9.1 13.4 9.8

75th 18.12 27.11 20.97 9.9 16.2 11.1

Max 40.44 49.00 44.73 28.6 37.9 30.3

Table 3: Summary of one-day ahead forecasting performance of the three competing methods:

Model 1 (M1), Model 2 (M2), Model 3 (M3). Summaries are based calls handled between 7am and

9:05pm for Monday through Friday and between 9am and 5pm for Saturday and Sunday

The empirical coverage of the 95% prediction intervals, not shown here, are also very accurate

with mean coverages within 1% of the nominal value for all three models. We should also note

that the prediction intervals for Model 1 are on average approximately 53% and 5% narrower than

Model 2 and 3. These results confirm that our model is robust when including further within-day

patterns in our analysis.

4.2.5 Forecast Calibration

One advantage of the Bayesian framework is that it provides the entire forecast density for the

rates and counts, fully accounting for uncertainty in the latent states and model parameters. These

densities can be used to provide an alternative measure of forecast performance, the probability

integral transform (PIT) (Rosenblatt 1952), which is defined for each day j and period k by

PITjk =
1

M

M∑

i=1

I
(
Njk < N

(i)
jk

)

where Njk is the actual observation and N
(i)
jk are Monte Carlo samples from the forecast density.

This measure has been used extensively in econometrics (see Shephard 1994 and Diebold et al.

1998) and in weather forecasting (see Gel et al. 2004). Assuming the predictive densities of the

counts are properly calibrated, the marginal distribution of the PIT should be uniform U [0, 1] across

all j and k. However, we expect the PIT to be correlated across periods k due to the within-day

dependence on the forecast estimate of xj. Due to this, the within-day distribution of the PIT will

tend to show higher variability than an iid sample. On the other hand, when combining all 64 days

of data, we would expect the distribution to be more uniform.

Figure 5 summarizes the forecast performance of our model for the week of August 18, 2003. The

first column displays the 95% predictive intervals for the rates and counts for each day. Columns
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Figure 5: Forecast performance for the week of August 8, 2003. Left: One-day-ahead forecast
means and 95% intervals for the rates and counts. Points denote the observed counts. Center:

Forecast residuals (observed counts minus forecast mean). Right: Probability integral transform
for the observed counts based on the Monte Carlo samples.
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Figure 6: Distribution and QQ-plot of the probability integral transform for the observed counts
based on the Monte Carlo samples combining the 64 predicted days.

2 and 3 display the forecast residuals (defined as the observed counts minus the forecast mean),

and the histogram of the PIT for each day. The results are very encouraging although the coverage

probabilities for that week are slightly high. For the most part, the forecast residual plots show no

obvious bias. The histogram of the PIT confirms that our forecasts are well calibrated since the

histograms are fairly symmetric and close to uniform. The distribution of the combined PIT over

all 64 days is shown in Figure 6. The histogram and the QQ-plot for the PIT exhibit a near-perfect

uniform distribution, confirming that the forecasts are very well calibrated.

4.3 Within-Day Learning and Forecasting

The previous section focused on predictions of call volume based on information available at the

end of the previous day. However, as new data arrive throughout the day, a manager may want to

reevaluate his or her forecast for the remainder of the day. For example, in the bank that provided

the data, telephone agents can be called up with as little as three hours notice. Prediction of the

afternoon volume based on the morning information would therefore be of use to this organization.

Re-estimating the latent states and parameters every few minutes using the algorithm proposed in

section 3.2 would be infeasible, as the full MCMC simulation took us approximately 30 minutes to

run, even when efficiently implemented in C. Therefore, a fast algorithm is needed to recursively

update the posterior density p(xj , z, θ|Y1:j−1, yj1, . . . , yjk) for each time period k.

At the end of day j − 1, we have available an MCMC sample from the historical posterior

distribution p(xj−1, z, θ|Y1:j−1). One possible way to proceed is to simulate xj from the transition

density p(xj |xj−1, θ) and reweight the draws {xj, z, θ} according to the likelihood p(yjk|xj, z, θ)
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as new data arrive. One problem with this procedure is that, in the presence of outliers, a small

number of draws would receive most of the weight, leading to degeneracy of the algorithm. In what

follows, we propose a slightly different approach which considerably alleviates this problem. We

notice that we can analytically integrate out xj and use the reweighting scheme described above on

{z, θ} alone. Then, conditioning on {z, θ}, we can draw xj directly from its conditional posterior

distribution.

In what follows, we will assume dependence on the historical data Y1:(j−1) but suppress it from

the notation. Let us also define Yjk = (yj1, . . . , yjk) as the data on day j up to period k. Recalling

that Ω = {xj−1, z, θ}, all relevant inference can be obtained from the joint posterior distribution

p(Ω, xj |Yjk), which can be decomposed as follows

p(Ω, xj |Yjk) = p(Ω|Yjk) p(xj|Ω, Yjk). (8)

The marginal posterior density for Ω is approximated by the discrete distribution

p(Ω|Yjk) ≈
M∑

i=1

I
(
Ω = Ω(i)

)
w

(i)
k , (9)

where Ω(1), . . . ,Ω(M) are the samples from the historical posterior p(Ω|Y1:(j−1)) and w
(1)
k , . . . , w

(M)
k

are the normalized weights. The conditional posterior for xj given Ω is normal, given by

p (xj |Ω, Yjk) = N (mk, vk). (10)

The recursive formulas for the weights, means and variances {wk,mk, vk} are defined below.

The normalized weights in Equation (9) are initialized to w
(i)
0 = 1/M , and updated according to

w
(i)
k ∝ w

(i)
k−1 p(yjk|Ω(i), Yj(k−1)) where

M∑

i=1

w
(i)
k = 1.

This follows from the fact that p(Ω|Yjk) ∝ p(Ω|Yj(k−1)) p(yjk|Ω, Yj(k−1)) where

p(yjk|Ω, Yj(k−1)) =

∫
p(yjk|Ω, xj , Yj(k−1)) p(xj |Ω, Yj(k−1)) dxj

is Gaussian with moments given in Step 2a of Algorithm 2.

The mean and variance in Equation (10) are initialized based on the Gaussian AR(1) transition

density and are updated recursively according to Step 2b in Algorithm 2. The posterior normality

and the moment recursions follow from the fact that p(xj |Ω, Yjk) ∝ p(xj|Ω, Yj(k−1)) p(yjk|xj,Ω),

where both densities on the right side are normal.

We are therefore able to express the joint posterior density p(Ω, xj | Yjk) as a mixture of normals.
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Hence, our within-day learning algorithm sequentially updates the weights, means and variances

of the normal mixture as new data are observed. The algorithm, described below, is equivalent to

the mixture Kalman filter proposed by Liu and Chen (2000) where the state variable is static.

Algorithm 2: Within-Day Learning

Step 0: Start with an MCMC sample, Ω(1), . . . ,Ω(M), drawn from p(Ω|Y1:j−1).

Step 1: Initialize the mixture weights, means and variances for each i = 1, . . . ,M :

w
(i)
0 = M−1, m

(i)
0 = α

(i)
dj

+ β(i)
(
x

(i)
j−1 − α

(i)
dj−1

)
, v

(i)
0 =

(
ψ2
)(i)

.

Step 2: For each period k = 1, . . . ,K and each i = 1, . . . ,M :

Step 2a: Update the mixture weights:

w
(i)
k ∝ w

(i)
k−1 φ

(
yjk | gdj

(tk)
(i) m

(i)
k−1,

(
gdj

(tk)
(i)
)2
v
(i)
k−1 +

(
σ2
)(i)
)
.

Step 2b: Update the mixture means and variances:

m
(i)
k = v

(i)
k

(
m

(i)
k−1

v
(i)
k−1

+
yjk gdj

(tk)
(i)

(σ2)(i)

)−1

, v
(i)
k =

(
1

v
(i)
k−1

+

(
gdj

(tk)
(i)
)2

(σ2)(i)

)−1

.

In Step 2a, φ(x|m, v) is a normal density evaluated at x with mean m and variance v, and the

weights are normalized so that
∑M

i=1w
(i)
k = 1.

The algorithm provides a closed form representation of the posterior density at each period k.

Given this information, the prediction densities for a future period k′, conditioning on the historical

data Y1:(j−1), are given by

p(λjk′|Yjk) =

∫∫
p(λjk′ |xj, zdj

(tk′)) p(xj |xj−1, θ) p(zdj
(tk′)|xj , θ, Yjk) dxj−1 dθ

p(Njk′|Yjk) =

∫∫
p(Njk′ |λjk′, θ) p(λjk′, θ|Yjk) dλjk′ dθ.

As noted previously, these densities are not available in closed form as the rates and counts are

nonlinear functions of xj and Ω. Therefore we propose a resampling algorithm in order to generate

draws from these distributions which is given below.

20



Algorithm 3: Within-Day Forecasting at Period k

Step 0: Start with {Ω(1), w
(1)
k ,m

(1)
k , v

(1)
k }, . . . , {Ω(M), w

(M)
k ,m

(M)
k , v

(M)
k } from Algorithm 2.

Step 1: Draw the indices l1, . . . , lM ∼ Mult(M ;w
(1)
k , . . . , w

(M)
k ).

Step 2: For each index li draw x
(i)
j ∼ N

(
m

(li)
k , v

(li)
k

)
.

Step 3: For each period k′ = k + 1, . . . ,K and each i = 1, . . . ,M ,

Step 3a: Set λ
(i)
jk′ =

(
x

(i)
j gdj

(tk′)
(li)
)2
.

Step 3b: Draw y
(i)
jk′ ∼ N

(√
λ

(i)
jk′ ,

(
σ2
)(li)

)
.

Step 3c: Set N
(i)
jk′ =

(
y

(i)
jk′

)2
− 0.25.

Steps 3a and 3c of this algorithm provide samples from p(λjk′|Y1:j−1, Yjk) and p(Njk′ |Y1:j−1, Yjk)

respectively. Note also that this algorithm is equivalent to Algorithm 1 at period k = 0 if we set

li = i for all i. We now investigate the impact of incorporating morning information on within-day

predictions.

4.3.1 The Importance of Within-Day Information for Forecasting

The comparison is performed as follows. For each day j from July 25 to October 24 (64 days),

we run the full MCMC algorithm described in Section 4.1 using data from the previous 100 days.

Based on this sample, one-day-ahead forecasts of the arrival rates and call volumes are computed

using the procedure from Section 4.2.1. Starting at the end of day j − 1, we then run the within-

day learning algorithm described in Section 4.3 through noon of day j. At 10am and 12pm, we

produce forecasts for the rest of the day. In order to provide a true out-of-sample comparison, we

evaluate the forecasts using only data after 12pm (108 time periods). The analysis presented below

compares the predictive densities of the rates and counts on day j conditioning on three different

information sets:

• Information at the end of day j − 1: p(·|Y(j−100):(j−1)).

• Information up to 10am on day j: p(·|Y(j−100):(j−1), Yj(37)).

• Information up to 12pm on day j: p(·|Y(j−100):(j−1), Yj(61)).

Table 4 summarizes the results of the forecasting exercise, from which several encouraging points

emerge. First, the empirical coverage probabilities of the prediction intervals are very close to the

nominal value for all three information sets, as the mean coverage across all 64 days is 92.6%,

93.8% and 95.3%, respectively. As expected, the average width of the forecast interval decreases as
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more data are observed, the average width of the forecast interval goes from 67.3 at the end of the

previous day to 61.1 to 60.8 for the 10am and 12pm forecasts, respectively. The same improvements

are not observed in the RMSE. This is partly due to three days where unexpected peaks in the

data between 9:30am and 12pm offset the forecasts and consequently result in an overprediction of

the call volume for the whole afternoon and evening.

RMSE Coverage Average

Probability Width

PD 10am 12pm PD 10am 12pm PD 10am 12pm

Min 11.33 11.08 11.07 0.593 0.519 0.519 62.45 56.30 55.90

25th 13.17 14.00 13.56 0.958 0.914 0.935 64.96 58.87 58.78

50th 14.60 15.50 14.80 0.972 0.963 0.963 66.31 60.74 60.42

Mean 16.93 17.86 16.59 0.953 0.926 0.938 67.37 61.11 60.80

75th 18.11 19.87 16.58 0.991 0.982 0.982 69.50 63.50 62.34

Max 52.48 57.72 53.66 1.000 1.000 1.000 77.09 70.86 70.01

Table 4: Summary of predicted call volumes handled by the call center between 12:05pm and

9:05pm at three different times of day: at the end of the previous day (PD), on the same day at

10am, on the same day at 12pm.

Figure 7 provides a graphical summary of the predictive distribution on September 2. The

top two plots display the mean and 95% equal-tailed interval for the rates and counts after 12pm.

As expected, the same-day forecast of the rates have much narrower intervals than those of the

previous day. The tightening of the predictive intervals for the counts is not as striking. This is

because the inherent Poisson variability dominates the uncertainty about the rates.

We observe a dramatic shift in the forecasts after incorporating same-day observations. The

reason for this is apparent as September 2 corresponds to the day after Labor day. Consequently,

the call center experienced an unusually high call volume that morning, leading to a significant

upward shift in the 10am and 12pm estimates. An even larger shift would have been observed if

we had not modeled that day as a Monday. Looking closer at the forecasts, the credible intervals

seem nearly parallel across different prediction times. The shift suggests that the estimate of xj

is more accurate having observed the early morning data but that the added information has not

modified the estimates of g or θ significantly.

The predictive densities of the rates and counts at 2pm are displayed in the bottom two plots of

Figure 7. These were obtained by applying the density function in S-plus to the Monte Carlo sam-

ples. The upward shift and narrowing of the distribution for the rates are clearly seen. In addition,

we note that the predictive densities for the rates and counts are both quite well approximated by

a normal distribution.
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Figure 7: Forecasts of the Poisson rates and call volumes on September 2 using three different
information sets. Top Left: Forecast mean and 95% intervals for the Poisson rates between 12:05pm
and 9:05pm. Top Right: Forecast mean and 95% intervals for the call volumes between 12:05pm and
9:05pm. Bottom Left: Forecast densities for the Poisson rate at 2:00pm. Bottom Right: Forecast
densities for the call volume at 2:00pm. Arrow indicates the actual observation.
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5 Conclusion

In this article, we provide a multiplicative Gaussian model to measure and predict the arrival rates

of an inhomogeneous Poisson process. We fitted this model to call center data provided to us by a

North American commercial bank. Based on the results in this study, we find that the fitted model

explains most of the variance in the data as the empirical results closely approximate the theory on

which this model is based. In addition, the model proposed in this paper clearly outperforms two

existing models used by practitioners in the industry when used to predict one-day-ahead arrival

rates. With the Bayesian procedures used to fit this model, we are not only able to provide point

estimates of the current and future arrival rates but also entire distributions on the parameters, state

variables and observables. We believe this is a considerable contribution as call center practitioners

need confidence levels on their estimates in order to staff their centers appropriately. Finally, we

provide a within-day learning algorithm that enables sequential estimation of the rate as new data

reaches the call center. This is particularly useful for managers as they can update their prediction

of the rates for the afternoon based on the observed morning pattern of calls and restaff their center

accordingly.

Our findings extend the work of Brown et al. (2005) who provided a model to predict arrival

rates of an inhomogeneous Poisson process. We believe we provide a more statistically sound

estimation procedure to the model presented in this paper. In addition, the Bayesian procedure

offers several improvements over the iterative least squares procedure. First, as stated above,

Bayesian methods automatically provide measures of uncertainty of parameter and latent state

estimates. Furthermore, prior knowledge based on the past experience of the manager can be

incorporated in the model. In addition, further unobserved components and covariates can be

incorporated in the model with little or no complications. Finally, the model presented in this

paper can provide k-day-ahead prediction of future arrival rates which is currently unavailable in

the work presented by Brown et al. (2005).

Although the method proposed in this paper has numerous advantages, we are still left with

a small complication that was mentioned previously in the paper. In the model, we impose a

constraint on the cubic spline. We do not incorporate this constraint in the prior as the prior

would no longer be Gaussian or closed form. We therefore draw from the unconstrained prior

and renormalize the posterior so that the constraint is satisfied. Our belief is that the posterior

distribution from this procedure is very close to the posterior distribution if we had incorporated

the constraint in the prior.

A more general issue arising from the analysis is the problem of distinguishing the two variance

components in an AR(1) plus noise model if the autoregressive coefficient is close to zero. To our

knowledge, an objective prior for this model has not yet been derived. This is a very interesting

problem as this is one of most widely used models in time series analysis due to its relation with
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the state space representation. Investigation of this problem is ongoing but still at a very early

stage.

Finally, the root-unroot methodology holds several advantages due to its relation with a Gaus-

sian model. As we have seen in this paper, conjugate Gaussian priors with the required covariance

structure can be used to model the time series dynamics. Conjugate gamma priors with the equiv-

alent dynamics are currently being investigated in order to model the original counts rather than

performing a transformation.
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APPENDIX: MCMC algorithm

A combination of the Gibbs sampler and the Metropolis algorithm are used to draw from the

posterior distribution p(x, z, α, β, τ2, σ2, ψ2 | Y1:J). The algorithm outline followed by a description

of the full conditional posterior distributions are given below.

1: Initialize x, α, β, ψ2, τ2, σ2.

2: Sample zi from zi|x, τ2
i , σ

2, Y1:J , for i = 1, . . . , 5.

3: Sample x from x|z, α, β, ψ2, σ2, Y1:J .

4: Sample α from α|x, β, ψ2.

5: Sample β from β|x, α, ψ2.

6: Sample ψ2 from ψ2|x, α, β.

7: Sample τ2
i from τ2

i |zi, for i = 1, . . . , 5.

8: Sample σ2 from σ2|x, z, Y1:J .

9: Go to Step 2.

Step 2: Sampling zi : i = 1, . . . , 5

Conditional on the x’s, the model can be cast into state space form:

wi(tk) = h′ zi(tk) + ek ek ∼ N (0, ν2
k)

zi(tk) = F (δ) zi(tk−1) + uk uk ∼ N (0, τ2
i U(δ)) k = 1, . . . ,K

where ν2
k = σ2

(∑
{j : dj=i}

x2
j

)−1
and wi(tk) =

ν2
k

σ2

∑
{j : dj=i}

yjk xj. The FFBS algorithm

can be used to draw from the required posterior density p(zi|τ2
i , σ

2, Y1:J). Given that zi(tk) =

{gi(tk), dgi(tk)/dtk}, we consequently obtain a draw of gi(tk). We then normalize the posterior

draws by setting gi(tk) = gi(tk)
(∑K

k=1 gi(tk)
2
)− 1

2

so that the restriction
∑K

k=1 gi(tk)
2 = 1 is

satisfied.

Step 3: Sampling x

Conditional on z, the model can be cast into state space form:

vj = xj + ζj ζj ∼ N (0, γ2
j )

xj = αdj
+ β(xj−1 − αdj−1

) + ηj ηj ∼ N (0, ψ2)

where γ2
j = σ2

(∑K
k=1 gdj

(tk)
)−2

and vj =
γ2

j

σ2

∑K
k=1 yjk gdj

(tk). The FFBS algorithm is then

used to draw from the required posterior density.
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Step 4: Sampling α

The full conditional posterior distribution for α is given by

p(α|x, β, ψ2) ∝ p(x|α, β, ψ2) p(α)

∝ N
(
(X

′

X)−1X
′

W, (X
′

X)−1ψ2
) ( 4∑

i=1

(αi − α)2

)−1

where

X =




−β 1 0 0 0

0 −β 1 0 0

0 0 −β 1 0

0 0 0 −β 1

1 0 0 0 −β
...

...
...

...
...




and W =




x2 − βx1

x3 − βx2

...

xJ − βxJ−1



.

The random walk Metropolis algorithm is applied to draw α since the prior is not conjugate.

Given the current value α(q−1), we draw α(∗) from the proposal density N (α(q−1), 0.5 I) and then

accept α(∗) with probability

min

{
1,

p(α(∗)|x, β, ψ2)

p(α(q−1)|x, β, ψ2)

}
.

The variance 0.5 I of the proposal density was chosen to provide an acceptance rate of approxi-

mately 30%.

Step 5: Sampling β

Under the prior specified in section 3.2, the full conditional density of β is given by

p(β|x, α, ψ2) ∝ p(x|α, β, ψ2) p(β)

∝ N
(∑J−1

j=1 (xj − αdj
)(xj+1 − αdj+1

)
∑J−1

j=1 (xj − αdj
)2

,
ψ2

∑J−1
j=1

(
xj − αdj

)2

)
U [0, 1].

The random walk Metropolis algorithm is employed to sample β since the prior is not conjugate.

Given the current value of β(q−1), draw β(∗) from the proposal density N (β(q−1), 0.01) and accept

with probability

min

{
1,

p(β(∗)|x, α, ψ2)

p(β(q−1)|x, α, ψ2)

}
.
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The variance 0.01 of the proposal density was chosen to ensure an acceptance rate of approximately

30%.

Step 6: Sampling ψ2

Assuming the standard conjugate inverse gamma prior IG(aψ, bψ), ψ2 is sampled from

p(ψ2|x, α, β) = IG


aψ +

J − 1

2
, bψ +

1

2

J∑

j=2

(
xj − αdj

− β(xj−1 − αdj−1
)
)2

 .

Step 7: Sampling τ2
i : i = 1, . . . , 5

Following Ansley and Kohn (1985), if we assume a conjugate inverse gamma prior IG(aτi , bτi), then

the full conditional posterior for τ2
i is

p(τ2
i |zi) = IG

(
aτi +K − 2, bτi +

1

2

K∑

k=2

Γi(tk)
′U(δ)−1Γi(tk)

)

where Γi(tk) = zi(tk) − F (δ)zi(tk−1).

Step 8: Sampling σ2

Assuming the standard conjugate inverse gamma prior IG(aσ , bσ), σ
2 is sampled from

p(σ2|z, x, Y1:J ) = IG


aσ +

JK

2
, bσ +

1

2

J∑

j=1

K∑

k=1

(
yjk − gdj

(tk)xj
)2

 .
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